Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Where To Find This Example

AWR Version 14

This example was named in V14, please see Milling_Machine_Dielectric_Removal_Effects

AWR Version 13

HTML

...

<button class="gh-button gh-green" title = "https://awrcorp.com/download/kb.aspx?File=/13_Examples/Analyst_Milling_Machine_Analysis_DS.emz" onclick="window.location.href='https://awrcorp.com/download/kb.aspx?File=/13_Examples/Analyst_Milling_Machine_Analysis_DS.emz' ">Download Project</button>

Understanding AWR .emz Files

AWR Version 12

HTML

<button class="gh-button gh-green" title = "https://awrcorp.com/download/kb.aspx?File=/12_Examples/Analyst_Milling_Machine_Analysis.zip" onclick="window.location.href='https://awrcorp.com/download/kb.aspx?File=/12_Examples/Analyst_Milling_Machine_Analysis.zip' ">Download Project</button>

Design Notes

MICROSTRIP CIRCUITS MANUFACTURED BY MILLING MACHINE

...

When you fabricate designs using a milling machine, the milling bit must extend down through the PCB metal and into the dielectric below. Due to human error or small variations in the metal thickness, you will typically extend safely into the dielectric below. You now have a dielectric for your microstrip that is not truly a microstrip configuration. The metal is sitting up on a small layer of dielectric (the full thickness of the board) and then the remaining dielectric is thinner than the full dielectric. The situation is shown in the figure below.

Image Modified

 

 

The microstrip modeling could have accuracy issues depending on how deep this dielectric is removed. This project is setup to simulate a simple microstrip open stub structure to see how much effect this dielectric machining will have on the performance of the structure. The project is parameterized so you can enter how deep the milling bit goes into the dielectric.

...

A network is modeled using schematic elements in "Schematic_Open_Stub". X-models are used to give the highest accuracy from this linear simulation network.

Image Modified

 

EM Model

The same network is modeled an Analyst 3D EM document in "Analyst_Open_Stub". The general setup procedure is discussed below. Refer to Help documenation for more details.

...

4. Swept variable control is used to sweep the machine depth.

Image Modified

 

 

Results

The rectangular graph "S21" clearly shows the effect of removing this dielectric material. The blue curve shows the schematic results and then the three red curves are different depths of dielectric removed. Note that from this structure, you can approximate the effective dielectric constant of the substrate. These equations are written in the "Global Definitions" section of this document, you just need to enter the frequency of the null of S21 and the length of the stub to calculate the effective dielectric constant. This approach was validated using the results from the microstrip model and using TXLine (Tools > TXLine) to calculate the effective dielectric constant.

Image Modified