
Scripting

2Scripting

User Written “Code” in MWO

Equations

On Schematic or Global Definitions Page

- Also typically on Output Equations Page

To set a parameter

To pass measured data to a

parameter (an output equation)

Built in functions available

Note: Can also create a function by using scripting.

3Scripting

User Written “Code” in MWO - 2

Scripting

Scripts are written in Visual Basic.

• Built in editor with debugger.

Scripts can be run from menu

• Global > Use in all projects.

• Project > Goes with project.

Used for general operations in MWO and the file system.

4Scripting

User Written “Code” in MWO - 3

Custom Library (PDK) Code

Used for writing compiled models, PCells, and Bridge Code.

Note: This code is written in C++.

The parameters (W,L) change

layout and model.

Bridge code allows “smart”

connections.

5Scripting

Scripts

Accessing Scripts

Global Scripts – are saved on your

computer.

Project Scripts – are saved with the project.

Note: Global Scripts – are saved in:

• Scripts come with software. In install directory

C:\Program Files\AWR\AWR2008\scripts

• The Examples.bas file – has many scripts in it.

In any directory specifed in your user.ini file: Help

> Show Files/Directories > user.ini.

[File Locations]

Projects=C:\john\awr_projects\tmp

Scripts=$DEFAULT;C:\john\awr_projects\scripts;

C:\john\awr_projects\training\subversion\Training

Prior to version 8 – global scripts were saved in a global.mws file.

6Scripting

Information and Help

• MWO/AO Users Guide - Chapter 13 and Appendix A

– Brief discussion on equations, the scripting environment and functions.
Section 13.5 has built-in functions and syntax.

• API Programming Guides –

– Scripting/API Guide: Details of VBScript as applied to MWOffice. (Not an
intro to VBScript and programming.) On the CD.

– Reference Guide: The schema and listing of the various object classes
and methods. On the CD.

– Sax Basic Reference Guide. On the CD.

– Scripting Functions Guide. On the CD.

– Adding Functions to the AWRDE through VB

• Info on VBScript on the Web

– Microsoft has a lot of training.

– http://msdn.microsoft.com/en-us/default.aspx

– Go to the learn Tab … and Visual Basic.

7Scripting

Information and Help - 2

API Documentation

Go to: www.awrcorp.com

- Go to downloads

It wants your email and

password.

- You can get a password by
filling out the “I’m and

Existing Customer…” form.

Go to API

Documentation
Tab

8Scripting

Example Scripts

There are over 160 scripts already written.

In KnowledgeBase …

.

.

.

9Scripting

List of things done in Scripts

• Circuit Synthesis

• Graph formatting

• Test XML Library Files – script places every element in

the XML Library onto a schematic for testing purposes.

• GUI Wizard

• Data Processing

• Project Documentation

• Layout Processing

• Clear Optimization/Yield/Tuning Variables

10Scripting

Acronyms and Glossary

• API - Application Programming Interface

– Environment to program MWO easily.

• COM - Component Object Model

– Allows programs to “talk” to each other...for example, MWO and
Excel.

• Sax Basic

– The language we (normally) use for scripting in MWO.

• Schema

– Organization of the various objects that can be used in
programming - for example: graph, schematic...

• AWRDE - The AWR Design Environment

– i.e. MWO!

• OOP - Object Oriented Programming

11Scripting

Objects Oriented Programming

(OOP)

• Classes of Objects are things (nouns!) we work with.
– Examples in MWO of Classes: Schematic, Graph, Shape in a

Layout, ...

– Examples in Excel: Workbook, Sheet

• An Object is an instance created from a Class
– Example: Schematic1 is an Object of Class Schematic.

• Objects have Properties:
– Example for object Shape2: Vertices, Drawing Layer, ...

• Methods - What we do to objects (verb!)
– Example for object Schematic1: Create, Delete, Export, ...

• Collection - is a group of the same class of objects
– Example: Collection Schematics - The group of schematics in the

current project.

12Scripting

The AWR Schema

In the Reference Guide

Maybe - we’d

better zoom in!

Tells us all the Classes of Objects in MWO

13Scripting

The AWR Schema - 2

The Class of Objects - Project

Has a Collection - Schematics

Which contain one or more objects of

the Class Schematic

14Scripting

The AWR Schema - 3

In the Reference Guide

Lists all Collections and Classes
of Objects

Tip: Collections end in an “s”.

Example:

•Schematic - Class

•Schematics - Collection of

Objects of Class Schematic

15Scripting

Scripting Install – Possible Issue

We are running version 8.

• If you never had version 7 on your computer … you have to carry out the

following procedure to fix the scripting editor (… so Intellisense is

enabled).

1. Open up the command prompt

- Click Run … and type: cmd

2. Go to the 8.0 install directory – usually it’s:

C:\Program Files\AWR\AWR2008

So type: cd C:\Program Files\AWR\AWR2008

3. Type “regsvr32 sb6ent.ocx”

Tip – To type this easily … go to the

Windows Browser – and copy / paste

the path in the command window.

16Scripting

Scripting Help – Possible Vista Problem

If you are running Vista ….

• Typing F1 in the scripting editor – might not bring up the Help file.

Solution:

• You can get a download of WinHlp32.exe from Microsoft at:

http://support.microsoft.com/kb/917607

Problem:

17Scripting

Exercise: List the Schematics

• Write a Program to List the Schematics in a Project

Open up the project: “First_Program”.

Open up the Scripting Editor

To open up the Editor:

•Tools > Scripting Editor

•Alt-F11

•Use the icon:

Standard Toolbar

Tip: If you can’t see it - look

in Tools > Manage Addins.

Make sure AWR Scripting

IDE is checked.

18Scripting

The Scripting Editor

Create a new project script.

-Right Click (RC) on Object Modules > Insert Modules

-Rename it to Schematic_Names

Global Scripts go here.

Project Scripts go here.

Note: All Users See these

for every Project. They are

stored in global.mws

Note: These are stored in

this project only.

19Scripting

The Scripting Editor - 2

The Local Script

We Created

Debug Window

Mode Module

20Scripting

How to Run Scripts

Method 1: Right click on the name of the script and select Run Sub Main

21Scripting

How to Run Scripts - 2

Method 2: Have the code module open and put the blue Run button (looks

like a VCR play button)

22Scripting

How to Run Scripts - 3

Method 3: Assign script (or called macro) to a Hot Key, Toolbar, or Hot Key

– Hotkey: Go to Tools > Hotkeys.

Category –

Macros has the

scripts.

Assign
the

Hotkey

here.

23Scripting

Exercise: List the Schematics - 2

The Strategy for Our Code

1. Look at the Collection Schematics

2. For Each Object of Class Schematic in the Collection Schematics

- Find the Schematic’s Name (A Property)

- Print it to the Debug Window

Next Schematic

So ...

•How do we make an object from a class?

•How do we work with a collection of objects?

•How do we get the object’s properties?

•How do we print?

24Scripting

Miscellaneous SaX Basic Tips

• Comments Begin with ‘

• Use Option Explicit

– Reduces errors as forces StrongTyping.

• Pick names that are easy to understand.

Tip: Strong typing means the variable must be declared in a Dim statement….

• Dim foo As Long

• Dim bar As Schematic

This is done to prevent typos.

• Typing fo0 will give “Error: fo0 not declared”.

•If you don’t have Option Explicit – it will create a variable fo0.

25Scripting

Finding the Classes of Objects

• Each program (including MWO) using the COM interface has Classes

of Objects.

• The available Programs can be found in the References Browser.

Open it by:

•Edit > References

•or Icon

Note: You must have a module open to see the reference browser.

We only need AWRDE.

26Scripting

Organization of Code

Add - Option Explicit

Note: Explicit is used to throw an

error if we haven’t properly

defined something. It’s not

required ... but - it’s a good idea!

This is a procedure - called Main. Note: You always need Main - it’s

where the script (macro) starts.

You can add other subroutines and

functions if you wish.Add the: Dim sch As Schematic

Created object sch of Class Schematic. Note: The script starts

by defining your objects

As classes. You also

define variables here.

Tip: sch is the name we gave our
object … it could have been named
whatever you like.

27Scripting

Getting Help in the Editor

Object Browser

The Class or Data Type

The Methods and Properties

- Returns a variable of Type String

or F2 or View > Object Browser

28Scripting

Getting Help in the Editor - 2

Intellisense

It will help you complete/pick the only available choices.

It automatically brings up the legal choices - as you

start typing Schematic... it will complete it for you.

Tip: Ctrl - Space will bring up Intellisense too.

29Scripting

Getting Help in the Editor - 3

• F1 for help.

• If cursor is over a recognized VB function name, help will go
directly to that function.

30Scripting

The Schema and Objects

Start at the top and

work our way down...

For Our Schematic:

MWOffice

Project

Schematics

Schematic

Class

Class

Class

Collection

Tip: Normally we omit MWOffice

- in our definitions of objects and

collections. It’s assumed. But if

you had another NameSpace - like

Excel - you have to start explicitly

with Excel.

MWOffice.Project

We Type:

MWOffice.Project.Schematics

so ... Project.Schematics will work.

31Scripting

Collections

How do we get at the individual

schematics in the collection?

Schematics

SchematicClass

Collection

Count is a Property ... Number of objects.

Method 1:

32Scripting

Collections - 2

The Debug.Print will print the value numsch in the

debug window.

We have to define a

variable of type Long.

Note: Notice the path -

Project.Schematics ... and

Count is a property of the

Collection Schematics.

Note: Long is an integer.

33Scripting

Collections - 3

You Can get at an item of a collection - if you know which item it

is...

Here we are getting the second item in the

Collection of Schematics - which is a Schematic

Object.... then, Schematic has a property Name -

which we can print.

Tip: It is a pain to loop through all the Collection elements using

something like –

• For I = 1 to N …

Because you have to know number of elements in Collection.

Instead … use For … Each…

34Scripting

Collections - 4

A nice control statement for Collections is - For Each ... In ...

- It will loop through all the objects in the Collection ... and you

don’t have to know the number ahead of time!

This clears the debugger

window.

The loop assigns Object sch to each

schematc in turn ... and prints it.

Method 2:

35Scripting

Debugging

• Sax Basic has its own debugging tools.

– Debug.print statement will print data to the debug window

– Can set break points and then continue to next break points

– Can step into our around subroutines

• We used it already in our example.

Dimension variable as class schematic

Clear debug window

Loop through all schematics in project

Print schematic name in debug window

36Scripting

Debugging Continued

• When this script is run, all of the schematic names will show up in the

debug window.

37Scripting

Debugging – Break Point

• You can easily add break points, select the location and hit F9 or use the

Debug menu.

• Below shows a break point before the script is run set to stop at the beginning

of the FOR loop.

38Scripting

Debugging – Query Variables

• When a script is holding at break point you can query the value for variables.

• In this example, F8 is used to step into the FOR loop. Then type

“?sch.Name” in the debug window on the Immediate tab to query the value

for sch.Name. This value is then displayed.

Use the () to get

values of a vector

where you would type

the index of the vector

between ().

You can also put cursor over

the variable to see it’s current

value.

39Scripting

Debugging – Query Variables

• Alternately, you can enter variables in the debug window on the
Watch tab. This will constantly display a variable value as code is
executed.

• Just type in the variable name in this area at it will be displayed as
you step through code.

40Scripting

Debugging – Break Point

• When the code runs it will stop at this point.

• You will see the break point turn yellow.

• Use the F8 key to then step through the code

41Scripting

Debugging - Printing

• Debug.Print

– Prints values to the debug window.

– Smart enough to figure out data type - so long as scalar or string.

• Normally, Debug throws in a line feed... ; suppresses

– Example: Debug.Print 3 ; 4; 5

• Debug.Clear

– Clears the Debug Window.

– Usually put near top of script.

42Scripting

Variables and Data Types

• We still often have need for traditional variables - esp.

when we work with functions.

• Must be defined with Dim statement (assuming you have

Option Explicit turned on).

• Most Commonly Used Types of Variables:

– Integer (A 16 bit integer)

– Long (A 32 bit integer)

– Single and Double (16 bit and 32 bit floating)

– String (Type in “ “ to make a string. Can use & to concatenate.)

– Boolean

– Complex (This is defined in MWO’s Data Types.)

– and of course ... Object

Actually - We’re not telling the whole story here ...

(Variants in a few slides)

43Scripting

Arrays

• We can define arrays:

– Example: Dim mywire(5) As Trace ... An array of 5

elements... of class Trace.

– Example: Dim the_values(3,4) As String ... A two
index array of dimensions 3 X 4 of type String.

• Later - we can access them as normal:

– Example: the_values(0,2) = “big value”

• Note - Arrays start with value 0 not 1.

– Dim myarray(1,1) is a 2 X 2 array, with each index 0

and 1.

44Scripting

Arrays - Redimensioning

• A common problem -

– I don’t know the size of the array until later in the script after I get some

user input.

• First - Define a dynamic array

– Example: ival() As Integer Number of elements not defined

• Later - Use ReDim

– ReDim ival(4) As Integer

• You can keep old data with the Preserve Statement

– ReDim Preserve ival(4) As Integer

– This keeps the ival(0) … ival(4) values if you later make the array bigger.

– Otherwise you lose all your data.

• Note: You will lose data if you downsize an array!

• Note: With Multidimensional arrays you can only resize the last index. (Can

add a column, not a row.)

• Example Script - ReDim_Array

45Scripting

Control Statements

• For ... Simple Loop (Note - Automatically
steps)

For Num = First To Last

statements

Next Num

• For...Each Useful for Groups of Items
For Each var In Items

- statements

Next var

• Do ... Until Keep looping until condition met.
Do

- statements

Loop Until conditional expression

Note: Can also use While instead of Until.

46Scripting

Control Statements - 2

• For ... Next Details Omitted

• If Then Else Details Omitted

• Select Case Picks choice according to

value of expression.

• And of course when all else fails ...

GoTo

Other Statements

But … it’s dangerous to use it – as you make

your code unreadable and difficult to

understand the logical flow.

And other scripters will scorn you!

47Scripting

Exercise - Number of Resistors in

Schematics

• Want number of resistors in each schematic, and total

number of resistors in project.

– Don’t need to include subcircuits, or netlists.

• User to be able to pick schematic in selection box.

• Number of resistors in schematic and project to appear in
new box.

We Need to Figure out:

• How to get at elements in schematics.

• How to find out which are resistors.

• Create a selection box, and output text box.

48Scripting

Elements in Schematics

Answer the following questions by looking at the Schema and

Object descriptions.

• How do you get the number of Schematics?

•Hint: Look at the properties of the collection schematics.

•What is the path/hierarchy to get to a Class of type Schematic?

• How do you go from Schematic to Element?

•What Properties of an Element might help us find out if it is a

resistor?

•Hint: We are looking for something to decide if it is a resistor, so

we can sort on it.

49Scripting

Elements in Schematics - 2

Conceptual Flow of the Code

1. Define All the variables and objects we need.

Dim sch As Schematic

…

2. Initialize the Counting Variables.

totalres = 0

…

3. Get the number of schematics and re-dimension the arrays.

numsch = The number of schematics

ReDim schnames(numsch-1) As String

…

Tip: You could use a

dictionary here for

names and number

of resistors … more

on this later.

50Scripting

Elements in Schematics - 3

4. Loop through the schematics…. Loop through each element in a

schematic … Look at Parameters in Each element … See if it’s a
resistor …

For each schematic in the project

For Each element in Schematics

For Each parameter in the Element

If the parameter = “R”

increment numresistors

End If

Next parameter

Next element

Print out the resistors and schematic name

Next schematic

Collection of schematics

Collection of elements

Collection of

Elements

Schematics

Elements

Parameters

51Scripting

The Actual Code - 1

This is the code PartA_Res.bas

1. Define All the variables and objects we need.

Option Explicit

Sub Main

Dim schnames() As String ' The arrays and objects
Dim resvalues() As Integer
Dim sch As Schematic
Dim anelement As Element
Dim aparameter As Parameter

Dim totalres As Integer ' Variables
Dim totalelements As Integer
Dim elementname As String
Dim numsch As Integer
Dim schindex As Integer
Dim numres As Integer

52Scripting

The Actual Code - 2

2. Initialize the Counting Variables.

totalres = 0

totalelements = 0

schindex = 0

elementname = "R"

3. Get the number of schematics and re-dimension the arrays.

numsch = Project.Schematics.Count

ReDim schnames(numsch-1) As String

ReDim resvalues(numsch-1) As Integer

53Scripting

The Actual Code - 3

4. Loop through the schematics…. Loop through each element in a

schematic … Look at Parameters in Each element … See if it’s a resistor …

For Each sch In Project.Schematics

numres = 0

For Each anelement In sch.Elements

For Each aparameter In anelement.Parameters

If elementname = aparameter.Name Then

numres = numres + 1

End If

Next aparameter

Next anelement

schnames(schindex) = sch.Name

resvalues(schindex) = numres

Debug.Print schnames(schindex);" Number of Resistors is: "; numres

schindex = schindex + 1

Next sch

54Scripting

Elements in Schematics - 6

The finished code is module PartA_Res.

The results in the Debug Window.

Part B: Now let’s add a user interface (UI).

We are going to use the UI builder to help us.

55Scripting

UI Builder

We can graphically build the UI, and the code will be written

for us.

Insert > User Form to bring up a blank UI builder.

After making your UI, and exiting the builder, the code will

be inserted.

56Scripting

UI Builder - 2

Let’s start with a simple example first …

Create a new script: Code Modules > Insert Module.

Rename it to: “Test UI”.

Our script will ask the user to input text into a dialog box, and print it

out in debug window. There also is a cancel button and an OK

button.

57Scripting

UI Builder - 3

Start out by creating a string variable: usertext.

Put the cursor here …
the user form will add

the graphics code

where the cursor is.

… then open up the
UserForm dialog.

58Scripting

UI Builder - 4

We draw what we want the user to see.

The text is drawn in a box. Use the “A” to draw the box.

RC the box and

enter text in

Caption.

Note: This is used to put text on

the screen. It has nothing to do

with any input from the user.

59Scripting

UI Builder - 5

A TextBox is placed on the form using the “AB”
button. This is where text will be input by the

user.

60Scripting

UI Builder - 6

Add OK and Cancel Buttons.

OK – will close the dialog box and continue code execution.

Cancel – will close the dialog box and exit with an error.

Tip: We will be able to capture the error and use it.

61Scripting

UI Builder - 7

Close the UserDialog Editor…

Say Yes to the Save Changes.

And it inserts the

code where the

cursor was.

Tip: If you have the cursor

in this part of the code …

opening Insert > User Form

… allows you edit it.

62Scripting

UI Builder - 8

Can be thought of as a special class – UserDialog.

Dim dlg As UserDialog … creates an object (here dlg) of class

UserDialog.

Dialog dlg … the method Dialog working on object dlg … makes

the userform.

Dialog Form
class defined.

dlg is an object of

this class. This creates (a method) the

form.

63Scripting

UI Builder - 9

Here … we change the message.

Here … an initial value is set for the TextBox.

Note: dlg has been created with Dim

before giving it the property

.TextBox1.

Note: You can change the property

name .TextBox1 to … whatever you

want (with a . in front of it).

Tip: .Text1, … etc.

are properties that

can be assigned to

the object.

64Scripting

UI Builder - 10

This prints the user input to the debug window.

Note: The method Dialog has

been used to create the form.

The user clicks the OK button, which closes the user form and continues

code execution.

Text typed in and OK button

clicked.

Shows up in Debug

window.

65Scripting

UI Builder - 11

Error Handling

If the user clicks the cancel button, an error is thrown.

Dialog(dlg) returns an

integer … 0 is an error

– i.e. they hit the Clear

button.

Note: Make sure

you define

errornumber as a

Long.

Note: Many methods return a value …besides

carrying out their action (making the dialog form).

Tip: End … ends the

program. Otherwise

it will keep executing.

66Scripting

UI Builder - 13

Go back to our Resistor project.

Let’s use a ListBox … for the schematic names.

User will select a schematic … and we will give them the number
of resistors.

67Scripting

UI Builder - 2

Add Text

Finished Dialog Box

Double Click on Text to Input

List Box

OK Button

68Scripting

UI Builder - 3

Begin Dialog UserDialog 400,203 ' %GRID:10,7,1,1

Text 30,7,310,70,"Please Select a Schematic",.Text1,2

ListBox 100,49,170,91,ListArray(),.ListBox1

OKButton 160,154,40,21

Text 50,182,310,14,"Select OK When Finished",.Text2,2

End Dialog

Dim dlg As UserDialog

Dialog dlg

Upon Closing - Will Place Code where cursor was in Module.

• ListArray() is a placeholder for a 1D String array

- Replace ListArray() with schname()

• .ListBox1 is a property of dlg which will give the element number

of the schname() selected.

Note: F1 gets you help on any keyword.

69Scripting

UI Builder - 4

Using the Code

Dim dlg As UserDialog

Dialog dlg

Debug.Print dlg.ListBox1

Define an Object - dlg

of Type UserDialog

Run Dialog

Note: The ListBox1 function is defined for

dlg. For example we can print it.

Remember - arrays start with element 0!

- dlg.ListBox1 = 0 ... The first element in the ListBox

- dlg.ListBox1= 1 ... The second element in ListBox

- ...

70Scripting

UI Builder - 5

Create a second User Box...

-Lists the total number of elements and resistors in the project.

-Lists the number of resistor in the chosen schematic.

TextBoxes

71Scripting

UI Builder - 6

Begin Dialog UserDialog 400,203 ' %GRID:10,7,1,1

Text 30,7,330,28,"The Total Number of Elements in

the Project: ",.Text1

TextBox 310,7,70,21,.TextBox1

TextBox 310,42,70,21,.TextBox2

Text 30,49,280,21,"The Number of Resistors in the

Project",.Text2

Text 80,91,210,28,"Number of Resistors in ",.Text3

TextBox 240,91,90,21,.TextBox3

TextBox 130,119,70,28,.TextBox4

OKButton 120,161,90,28

End Dialog

Dim answerbox As UserDialog

answerbox.TextBox1 = Str(totalelements)

answerbox.TextBox2 = Str(totalres)

answerbox.TextBox3 = schnames(dlg.ListBox1)

answerbox.TextBox4 = Str(resvalues(dlg.ListBox1))

One Way to Do It ...

Note: Use of Str()

function to convert

to String.

72Scripting

How to Share Scripts

• Export a Visual Basic module into a .bas file that can then

be imported into another project.

Exporting Our Script

73Scripting

Global vs Local Scripts

• Global scripts will be available in every AWR
project you open… they live on your
computer.

– They are saved in directories described in

Slide 5.

• Project scripts will only be available in the
project they are loaded.

• Project scripts are saved per project.

Import Our Script in As a Global Script

74Scripting

Assigning HotKeys to Global Scripts

Tools > Customize

Pick Script in Category Macros

Give it a HotKey

Make sure you hit Apply!

Tip: Can use Ctrl, Shift, and Alt keys

in defining hotkey.

75Scripting

Calling Other Com Objects

• Through the Microsoft Com API, you can easily call other

COM compliant applications.

• You should add the object reference to the project.

• Then when you dimension a vector as the other object,

you can call those objects, view the Intellisense for them
etc.

• We will look at two cases

– Microsoft Scripting Runtime

– Excel

Note: Don’t confuse this with

Microsoft Scripting Library

76Scripting

Dictionaries – A Handy Storage

Container

• Dictionaries are a great way to store data

- No need to dynamically resize anything

- Array is keyword and value pairs

Requires Microsoft Script Runtime Reference be added as an object reference

Note: This library gives access to Files, Folders, Drives, etc.

- It’s the critical library for working with anything in the file
system!

77Scripting

The Variant Class

• All variables are of class Variant.

– Integer, Long, ... are sub-classes.

• Variant can be anything! - string, integer, float,...

– So - a Variant array can be a combination of different things.

– Of course ... there’s a danger you will get confused…

– So use Option Explicit to override this.

• Dictionary items and keys work with the Variant datatypes - for
maximum flexibility.

78Scripting

Dictionaries - 2

Dim Test As Scripting.Dictionary

Set Test = New Dictionary

This statement defines Test

as a Dictionary object.

Note: Scripting is here to make sure

we are looking in the MWOffice

Scripting library. If you don’t put it in -

it will look in AWR Design first ...

(But AWR doesn’t have a

Dictionary...)

Decreasing Priority

Set is used to assign

Test to class Dictionary.

Assign and define are

different - you need

them both. when you

create an object and

want to work with it.

79Scripting

Dictionaries - 3

• Provides ability to look up an ‘item’ based on a ‘key’

• Add and remove entries based on either the item or the key

Adding items

Test.Add("first","Resistor1")

Test.Add("second","My_project")

Test.Add("third",3.14)

Test.Add(4,7)

Test.Add("4","Pi")

_Object.Add(_Key,_Value)

Notice the Key and Value pairs

can be any scalar variable type:

Integer, String, Float,...

Note: These keys are different!

One is an integer 4, the other is a

string.

80Scripting

Dictionaries - 4

Methods and Properties for

Dictionaries

Debug.Print Test("third")

Prints item of Test with key “third”.

Test("third") = 6.7

Sets array element with key “third”

to 6.7.

myitems = Test.Items

myitems is a 1D Variant array with

elements of the Test items.

Other Examples

81Scripting

Dictionary Example

Work with the PartA_Res script.

We add a dictionary – where the keywords are the names of the

schematics, and the values are the number of resistors.

Dim dictRes As Scripting.Dictionary ' A dictonary from Microsoft

Scripting Namespace.

Set dictRes = New Dictionary The Dim statement defines
the dictRes as an object of

type Dictionary … but ….

The Set … New statement is needed to

actually create the dictionary!

82Scripting

Dictionary Example - 2

schnames(schindex) = sch.Name

resvalues(schindex) = numres

dictRes(sch.Name) = numres

The dictionary is placed

in the loop with the

schematic names as

keywords … and
numres as values.

Debug.Print dictRes("Moe")

.

.

.
So later on we can find the

number of resistors for a

schematic.

The advantage of this … a user could just type in a string - to be used
as the keyword in the dictionary …

83Scripting

Microsoft Scripting Runtime … and the file
system

You can interact with the file system.

Here’s some snipets of a script written for recursively
copying all the files from one directory to another.

Function RecCopy(strFromLoc,strToLoc) ' Recursively copies directories and

files from strFromLoc to strToLoc.

Note: A function can be used in the main program. For

example – we can use this one in the main program as:

RecCopy(“C:\foo”,”C:\bar”)

Functions have the form:

Function funcname(variables)

…

End Function

84Scripting

The File System - 2

Function RecCopy(strFromLoc,strToLoc) ' Recursively copies directories

and files from strFromLoc to strToLoc.

Dim objFSystem As Scripting.FileSystemObject

Dim objFolder As Object

Dim objSubFOlder As Object

Dim objFile As Object

Set objFSystem = CreateObject("Scripting.FileSystemObject")

Set objFolder = objFSystem.GetFolder(strFromLoc)

Defining the objects

Creating the objects… 2 different ways.

Set … CreateObject – same as Set … New

GetFolder – since we are doing something
(method) … the objFolder is created in the

process.

We got a folder!

85Scripting

The File System - 3

objFSystem.CreateFolder(strToLoc) Create a folder.

objFSystem.CopyFile(strFilePath,strToLoc&strFileRel,True) Copy Files.

strFolderName = objSubFOlder.Name Find its name.

You can also delete … so – be careful!

It’s usually a good idea to check if a folder or directory exists before
you do something…

If objFolder.SubFolders.Count > 0 Then …

The entire function is named … RecCopy.bas

Tip: http://msdn.microsoft.com/en-us/library/bstcxhf7(VS.85).aspx

for a lot of info on Script Runtime Library.

86Scripting

Example - An Excel Spreadsheet

• Example of putting all the parameters for elements in a

schematic in an Excel spreadsheet.

• Below is the schematic being used for this example -

Excel.emp.

CAP
ID=C 1
C=9.596 pF

C AP
ID =C2
C =9.197 pF

C AP
ID =C3
C =10.34 pF

IN DQ
ID =L1
L=15.53 nH
Q=100
FQ=1000 GHz
ALPH=1

INDQ
ID=L2
L=31.94 nH
Q=100
FQ=1000 GH z
ALPH=1

IN DQ
ID =L3
L=33.26 nH
Q=100
FQ=1000 GHz
ALPH =1

IN DQ
ID =L4
L=18.8 nH
Q=100
FQ=1000 GHz
ALPH=1

PORT
P=1
Z=50 Ohm

PORT
P=2
Z=50 Ohm

87Scripting

Excel Reference Added

• Add Excel Object

• Add Microsoft Excel Reference

88Scripting

Excel Code - 1

Dim sch As Schematic

Dim p As MWOffice.Parameter

Dim elem As Element

Dim Excel As Object

Dim Workbook As Object

Dim sheet As Object

Dim Ex As Excel.Application

Sub Main

' Create an instance of Excel

Set Ex = CreateObject("Excel.Application")

Defining these as generic

Objects right now... Can get

specific later.

Need to specifically refer to

Excel namespace as MWOffice

also has Application.

Ex is now assigned to an Excel

Application.

89Scripting

Excel Code - 2

If Ex = "" Then

MsgBox("Excel not found on this machine, program terminated")

Exit Sub

End If

Ex.Visible = True

Ex.Interactive = True

shts = Ex.SheetsInNewWorkbook 'stores users original default sheets per

workbook

Ex.SheetsInNewWorkbook = 1 'sets new workbooks to only have one

sheet, however, changes user default

Set Workbook = Ex.Workbooks.Add() 'adds new workbook

Ex.SheetsInNewWorkbook = shts 'reset sheets per workbook

default

shtcnt = 1 'stores number of sheets

Forces you out of the If Then

This code adds a new workbook with one sheet - after making

sure not to trash the user’s default number of sheets for new

workbooks.

90Scripting

Excel Code - 3

'set schematic (could be done with UI).

Set sch = Project.Schematics("filter")

'Add column headers for each new sheet

Set sheet = Workbook.Sheets(1)

sheet.Name = sch.Name

sheet.Range("A1").FormulaR1C1 = "Element"

sheet.Range("B1").FormulaR1C1 = "Parameters"

row = 2 'starting row

This code names the sheet to the schematic name, and puts

the fields Element and Parameters at the top of the first 2

columns.

91Scripting

Excel Code - 4

'loop through all elements

For Each elem In sch.Elements

If elem.Enabled = True Then

sheet.Range("A"+row).FormulaR1C1 =

elem.Name

chrval = 66 'numberical value for character A

For Each p In elem.Parameters

End If

Next elem

sheet.Range(Chr(chrval)&row).FormulaR1C1 = p.Name +"=" +

p.ValueAsString

chrval = chrval+1

Next p

row = row+1

' Fit the columns to the data we've entered.

sheet.Range("A1:J1").EntireColumn.AutoFit

End Sub

92Scripting

Calling Other Applications – Results

93Scripting

Event Handlers

• Scripting Code that runs when certain events happen with the
software (simulation starts, simulation stops, place an element, etc).

• Can stop the simulation in each optimization iteration.

• Event handles are coded by opening up the ThisProject node under
the Object Modules node.

• Select Project in the Object selection to have a list of all AWR event
handles in the Proc: section.

• When you select an event handler a section of code is added.

94Scripting

Scope and Lifetime of Variables

• Scope is what part’s of the program can “see” a variable.

– Procedure Level Scope (or Local Scope): Within a procedure or
variable - everything can see the variable.

– Note: So far, all are variables have been Local to Procedure Main.

– Script Level Scope (or Global Scope): When the whole script
sees a variable.

– Note: For Classes - also something called Private and Public... We won’t

discuss it here.

• LifeTime of a variable is how long it “exists” in memory.

– Normally ... variables exist while the procedure / function is
running.

95Scripting

Scope Example

foo is a global variable

longTry is local to the

Procedure Testexample.

96Scripting

Simulation Timer Example

Make Sure on Project not (General)

Globally Defined Variables

97Scripting

Simulation Timer - 2

These are the available

Procedures.

98Scripting

Simulation Timer Example - Results

99Scripting

User Defined Equations

• Methodology to extend Output Equations to do

anything you want.

• Allows users to use a power programming

environment that will proven and bug-free

• Done by writing “Function” blocks that live in a VB

Module called “Equations”.

• P1dB Example

– P1dB is not a built in measurement, so can be done

with a custom function.

100Scripting

P1dB Example - Project

101Scripting

P1dB Example - Equations

• First 4 equations are getting input and output power in

dBm.

• Fifth equation has a custom function called p1db, that

takes vector of input power, vector of output power, and

the compression point (1dB, 2dB, etc) and returns the
compression point as a single number

pout = Am p:DB(|Pcomp(PORT_2,1)|)[*,X]

Rem ember, power returned in dBw, so must scale to dBm by adding 30

pout=pout+30

pcom p= p1db(pin,pout,1)
pcom p: 9.814

pin = swpvals(pout)
pin = pin+30

p1db function: compression point = p1db(power in, power out, dB compression point)

102Scripting

P1dB Example - Equations

Name of code module must be

Equations

Code written as a Function

Name of function is name used

in output equations to call the

function

Debugging custom functions is

the same as stand alone scripts.

The only difference is that the

break points will catch when you

simulate (causes script to

execute)

