Page tree

Versions Compared


  • This line was added.
  • This line was removed.
  • Formatting was changed.


Or in Version 13 or higher you can open the project directly from this page using this button. Make sure to select the Enable Guided Help before clicking this button.

<script src=""
<button class="gh-button gh-projectopen" onclick="runAwrScript('awrGhOpenProject','DVB_TX.emp')">Open Install Example</button>

Design Notes

Digital Video Broadcasting (DVB) Transmitter

This example illustrates a DVB transmitter, based on the ETSI EN 300 744, V 1.5.1 (2004-06) technical specifications.


Configuration parameters are described below.

- TRANSMISSION_MODE determines the inner interleaving (Section 4.3.4) and signal constellation and mapping (Section 4.3.5). Available options are:

            - QPSK Non-hierarchical

            - 16QAM Non-hierarchical

            - 64QAM Non-hierarchical

            - 16QAM Hierarchical

            - 64QAM Hierarchical

- OPERATION_MODE is defined in Section 4.1 and can be set to:

            - 2K

            - 4K

            - 8K

            2K and 8K modes are defined for both DVB-T and DVB-H. 4K mode is used exclusively in DVB-H systems and is defined in Annex F.

- RANDOMIZE can disable randomization of input data, which may be useful for testing purposes. This is achieved by setting the RANDOMIZE parameter to Off.

- CODE_RATE determines the rate of the convolutional inner encoder. Available rates are:

            - 1/2

            - 2/3

            - 3/4

            - 5/6

            - 7/8

- MOD_ALPA determines constellation proportions (Section 4.3.5). It is always 1 for Non-hierarchical modes, so in this case it is ignored. The available settings for Hierarchical modes are:

            - 1

            - 2

            - 4

- CHANNEL_BW defines the standard channel spacing defined in Section 4.1. Available options are:

            - 8 MHz

            - 7 MHz

            - 6 MHz

            - 5 MHz

            5 MHz channel spacing is defined for use outside the traditional broadcast bands and parameters for operating with such spacing are given in Annex G.

- G determines the guard interval for the OFDM modulation. The available options are:

            - 1/4

            - 1/8

            - 1/16

            - 1/32

- TX_OUT_LEVEL determines the output level of the transmitter and is defined in units defined in Options/Project Options/Global Units, in the Power window.

- TX_CARRIER_FREQ determines the carrier frequency in units defined in Options/Project Options/Global Units, in the Frequency entry.

- SMPSYM determines the number of samples per symbol used at the transmitter.


This example implements a typical Device-Under-Test (DUT), which includes amplitude and phase imbalance, DC offset, phase noise, and a file-based power amplifier. The test bench monitors the following measurements:

  • The CCDF at the input and output of the


  • DUT
  • The signal spectrum at the input and output of the


  • DUT
  • EVM %rms vs. output


  • power
  • AM-to-AM conversion caused by the power


  • amplifier
  • Distortion of the signal constellation caused by the power amplifier

Note the amplifier model is based on a text data file. It can be replaced with an MWO circuit or a VSS behavioral amplifier model that accounts for frequency dependency. This test bench is used to illustrate several capabilities of VSS.