
Scripting Development Environment
AWR's Script Development Environment (SDE) allows you to create and execute macros and utilities to automate complex tasks from within the AWRDE.
The SDE supports scripting in Visual Basic and includes syntax highlighting and powerful debugging capabilities.

The Scripting Editor contains BASIC script modules that you can run from the program by choosing or Scripts > Global Scripts Scripts > Project Scripts
directly, or from within the SDE.

The language used in scripts is SAX Basic, a subset of Microsoft® Visual Basic® for Applications. SAX Basic language online Help is available here: AWR
_V13_API_Diagram.pdf

Components of the Script Development Environment
Project Browser

Local Modules
Global Modules
Speed Menus

Developing Scripts
References
Object Browser
Object and Proc Lists
Status Bar
Auto-Complete
Referencing Subroutines and Functions in Other Files

Stand-Alone File on Disk
Another Script Loaded in the SDE

Getting Help
Debugging Scripts

Break Bar
Stepping Through Code
Immediate Window
Watch Window
Stack Window
Debug.Print Statement

User Forms
Running Scripts from the AWR Design Environment
Menus

Edit Area Speed Menus
File Menu
Edit Menu
View Menu
Insert Menu
Debug Menu
Run Menu
Help Menu

Components of the Script Development Environment
To open the SDE, choose Tools > Scripting Editor or click the Scripting Editor toolbar button. The AWR SDE window opens.

https://awrcorp.com/download/kb.aspx?file=13_scripts/AWR_V13_API_Diagram.pdf
https://awrcorp.com/download/kb.aspx?file=13_scripts/AWR_V13_API_Diagram.pdf

The he components of the SDE: following table describes t

Name Description

Project Script Project Browser (or simply, Project Browser). Allows you to create scripts to automate tasks within the AWRDE. The scripts display as two
subnodes. The first subnode, , contains global modules. The second subnode, Untitled Project contains project-specific modules also Global .emp
called local modules.

Menus A set of menus: , , , , , , and Help. Most of the menu choices and commands are also available as buttons on the File Edit View Insert Debug Run
toolbar.

Script
workspace

The area in which you design, run, and debug scripts.

Immediate
/Watch/Stack
window

The area in which you can print the results of a running script and watch the value of the variables during the debugging process.

Toolbars
(Standard,
Debug, and
Edit)

A row of buttons that provides shortcuts for editing, running, and debugging scripts; creating new Code Modules; accessing VBA Object Browser
Help; adding available references to a Project; and for accessing Immediate, Watch and Quick Watch Windows.To view a tooltip for a particular
toolbar command, pass the cursor over the button.

Project Browser
The scripting browser is along the left side of the SDE and organizes the scripts available in the project. Scripts can be either global or local to a project. If
a script is general purpose, you should save it as a global script. If the script only works with a specific project, you should save it as a local script.

Local Modules

Shown in the scripting browser with the name of the project, in this example “Untitled Project.emp.” Local scripts are saved in the project, so if you copy
your project file to another machine, your scripts are automatically included.

Global Modules

Scripts stored in the or folders are included in this. From the AWR Design Environment, select to find Scripts ScriptsUser Help > Show Files/Directories
these folders. folder contains the factory scripts shipped with the product installer. contains global scripts that the user manages. Scripts ScriptUser
Global scripts are available to all projects. The subnode contains all global scripts that are stored separately in individual files located in Global *.bas
specific folders on your computer. You can add a new file to your folder, then right-click the node and choose *.bas ScriptUser Global Check For New

 to make the new script available.Files

To define more than one global script folder, add the following line in your file:User.ini

 [File Locations]
 Scripts=$DEFAULT;<path>

where is the full or relative path to the folder to search for additional files. You can add more than one path by separating paths with semi-<path> *.bas
colons. PDKs can also specify a scripts file location, so scripts can be shipped with PDKs and loaded automatically as global scripts.

Speed Menus

Right-click in the scripting browser to get the following menu commands:

Command Description

View Code Opens that code module for editing.

Run Sub Main Run the Main subroutine in that code module.

Insert Module Insert a new code module.

Rename Rename the selected module.

Remove Remove (delete) the selected module.

Export Save the module to disk as a .bas file.

Print Print the selected module.

Import Import a module from disk (only in Local Modules). You will be prompted to browse for a .bas file to import

Check for New Files Add any new files in the global locations to the SDE (only in Global Modules).

Developing Scripts
The code can either be in code modules or object modules. Code modules contain procedures that run from start to finish when executed. This is useful
for creating macros or procedures for automating tasks that you would normally perform manually. Each module will begin with a 'Sub Main', and each
code module is listed the project browser as a separate item. To create a module, right-click the Global or the local node and choose Insert Module. A
new module is added to the node, and a new window will be opened with the 'Sub Main" defined.

' Code Module
Sub Main

End Sub

An Object module runs code in response to events generated by the AWRDE object. Object modules do not have a Sub Main that executes when they
run. Instead, they contain special functions called Event Handlers that execute in response to events that objects start. When run, the Basic engine waits
for an event to occur, such as adding a schematic to the project. When the event occurs, the associated event handler code executes.

To enter the code that responds to an event, expand the project tree for the local scripts, into the node and double click on the node Object Modules
named ThisProject. we do not support global object modules at this time. Note: In the code editor window, select the object that starts the event from the
object list (this will be called for events from the AWR API), and then select an event from the Project Proc list. After you select an event, a handler
procedure is added to the module, and you can add any additional code you want to execute. The following figures show this process.

The following code is added to the code editor window.

 Private Sub Project_NewSchematic(Schematic As MWOffice.Schematic)

End Sub

Before the code can respond to events, you must run the module by clicking the Run button on the toolbar.

Next time you open the project containing object modules, a dialog box will appear asking if you would like to enable or disable macros.

If you choose , the object module will not be running. You can immediately edit the code, and you will need to click on the toolbar to Disable Macros Run
be able to respond to an event.

If you choose the object module will be running. You Enable Macros, will need to click End on the toolbar to be able to edit the code, and the AWRDE will
be automatically responding to events.

If you set the option, the dialog will not show again for that project. If you need to change the settings Always use the settings and do not warn again,
and to have the dialog, there will be an entry in the file. Search for the project name in the and remove the entry for the warning about user.ini user.ini
the script.

1.

2.
3.

[test_project.emp]
EnableMacros=-1

References

To work with different automation clients and their objects, you should create a reference to a COM components type library using the following steps in
the SDE:

Click the button on the toolbar or select from the menus. A list of references similar to those shown in the References Edit > References
following figure displays.

Select the checkbox next to the reference you want to add.
If the desired reference is not listed, click the button and locate the type of library you want to use.Browse

The AWRDE object library is selected by default and references must be set for the object module and each code module separately. Each checked
reference is searched in order from top to bottom.

Object Browser

The Object Browser shows information about all the special data types that are available.

To open the object browser in the SDE, click the o button on the toolbar or choosebject browser View > Object Browser from the menus

The following figure shows the object browser with the AWRDE (MWOffice) type library selected.

Note: more modern SDEs might provide more insightful object browsers. For example, creating a script in Microsoft Excel, adding a reference to the AWR
type library and then using the object browser shows like below.

Object and Proc Lists

The and lists are shown at the top of any code or object module. Object Proc

The object list shows all the objects in the current module

The object groups all of the procedures which are not part of any specific object.(general)
When in an object module, you can also select Project

The list shows all the procedures (list of all subroutines and functions) for the current object.Proc

Selecting a procedure that is not bold inserts the proper procedure definition for that procedure, this mostly applies to object modules.
Selecting a procedure that is bold will arrange the file such that the selected procedure is in view.
(takes you to the beginning of the file for where global variables can be defined. declarations)

Status Bar

The status bar gives more information about what is happening with the code. The right side of the status bar also lists the file line number for the cursor.

Auto-Complete

Auto-completion in the IDE uses the object browser information to show the current object's methods and properties.

For example, when you type "project.", you will get a list of the available objects available under the Project object.

As you continue typing, it will match the closest child object and will be highlighted. For example, typing "project.sch" will show as below.

Notice the object that is highlighted. If you press the key, that object is completed.Tab

To see language extensions, built-in instructions/functions, and user-defined procedures/variables press on a blank line in the IDE.Ctrl-Space

Referencing Subroutines and Functions in Other Files

If you want to reference subroutines or functions in other * files, there are several options. Referencing code can be a good way to track common .bas
groups of code you want to reuse and easily update.

Stand-Alone File on Disk

To reference subroutines and functions in a stand-alone file

Use the following in your script:

 '#Uses "global.bas"
Sub main

End Sub

The path to the file can be an absolute path or a path relative to the AWR Project file in which you are working. The disadvantage of this approach is that
you cannot debug into any referenced functions.

Another Script Loaded in the SDE

To reference subroutines and functions in another script loaded in the SDE for that type (Global or Project)

Use the following in your script:

 '#Uses "*global"
Sub main

End Sub

Notice a few differences. There is no path to the file. You use a "*" before the name. You do not use the ' extension for the file..bas'

NOTE: You cannot reference items in a Project level script in Global scripts, nor items in a Global level script in Project scripts.

Getting Help

When typing code, press the F1 key to display Help for the specific word the cursor is over. If the cursor is over a component that belongs to the AWR API,
the AWRDE Help opens to the appropriate section. Newer Microsoft operating systems do not support the help system build into the current SDE. We
recommend you use the to understand the SAX basic specific commands. PDF documentation

Debugging Scripts

There are various techniques to debug scripts that will be described below.

Break Bar

The break bar shows which lines have breakpoints. It also shows which line is next to execute. Clicking on the break bar toggles the breakpoint for that
line. Alternately, the will toggle the current line of the cursor to have a breakpoint or not. Debug > Toggle Breakpoint

https://awrcorp.com/download/kb.aspx?file=/Questions/AWR_Sax_Basic.pdf

1.
2.
3.
4.

Stepping Through Code

When your code has stopped at a breakpoint, you have various options; the options are available from the menu. See the menu listings below for Debug
the hotkeys.

Step Into - Steps to the next line of code and into any subroutes or functions.
Step Over - Steps to the next line of code and over any subroutes or functions.
Step Out - If in a subroute or function, step out of the procedure to the next line of code.
Run To Cursor - Run to the current location of the cursor.

When you run the script after a breakpoint, the code will run to the next breakpoint or to completion.

Immediate Window

The window is automatically displayed above your code. Use your mouse to drag the divider between the code and the window to immediate Immediate
change how big each one is relative to the window size. The window is used to evaluate an expression, assign a variable or call a subroutine.Immediate

Type "?expr" to show the value of "expr".
Type "var = expr" to change the value of "var".
Type "Set var = expr" to change the reference of "var".
Type "subname args" to call a subroutine or built-in instruction.
Type "Trace" to toggle trace mode. Trace mode prints each statement in the immediate window when a macro/module is running.

Watch Window

The window is automatically displayed above your code when the code paused during debugging. The window is used to list the variables, Watch Watch
functions, and expressions that are calculated and displayed.

Each time execution pauses the value of each line in the window is updated.
The expression to the left of "->" may be edited.
Pressing Enter updates all the values immediately.
Pressing Ctrl-Y deletes the line.
Add variables to the window typing the name and typing . Alternately, when the code is paused, put your cursor over a variable and Watch Enter
select Debug > Add Watch.

Stack Window

The window is automatically displayed above your code when the code paused during debugging. The window is used to list the lines which Stack Watch
called the current statement.

The first line is the current statement. The second line is the one that called the first. And so on.
Clicking on a line brings that macro/module into a sheet and highlights the line in the edit window.

Debug.Print Statement

You can use the 'Debug.Print' statement to print values of variables. The values will be printed in the window for you to view. Immediate

You can also use the 'Debug.Clear' statement to clear out the contents of the window. Immediate

Note: you can copy and paste from the windowImmediate

User Forms

 UserDialog is described by a Begin Dialog...End Dialog block. To graphically add a UserDialog place the current selection in the code where you want the
dialog and select Insert > UserForm from the Scripting Development Environment.

The following will display:

Use the controls on the left to add items to design your form. Hover your mouse over each item to understand what they are for. When you are done,
close the dialog, and the code for the form will be inserted into your script.

To graphically edit a UserDialog place the current selection in a UserDialog block and select Insert > UserForm from the Scripting Development
Environment. The dialog will open to edit the previously created form.

The following code is an and button. OK Cancel

Begin Dialog UserDialog 400,203 ' %GRID:10,7,1,1
 OKButton 50,161,90,21
 CancelButton 210,161,90,21
 End Dialog
 Dim dlg As UserDialog
 Dialog dlg

When you have a cancel button, you need to return a value from the dialog to make decisions. Below is the code changed to handle a cancel button
press.

' Code Module
Sub Main

 Begin Dialog UserDialog 400,203 ' %GRID:10,7,1,1
 OKButton 50,161,90,21
 CancelButton 210,161,90,21
 End Dialog
 Dim dlg As UserDialog
 rtn =Dialog(dlg)
 If rtn = 0 Then 'cancel pressed
 End
 End If

After adding a control, double-click to edit properties for each control. The example below is a text field in a dialog.

There are options for the dialog itself. You double click anywhere in the editor, not on a control item.

The field will be the name of the dialog, and the name is to reference the function to do advanced dialog controls. Caption Dialog Function

The example below shows both fields entered.

When closing the dialog with the field filled, you will get the prompt below. You usually would click next, and then the shell of the dialog Dialog Function
function code will be added.

With the form looking like below,

the code in the editor will be.

' Code Module
Sub Main
 Begin Dialog UserDialog 400,203,"My Example Dialog",.examplefunction ' %GRID:10,7,1,1
 Text 30,21,270,28,"AWR Example Text",.Text1
 OKButton 30,105,90,21
 CancelButton 140,105,90,21
 End Dialog
 Dim dlg As UserDialog
 Dialog dlg

End Sub

Rem See DialogFunc help topic for more information.
Private Function examplefunction(DlgItem$, Action%, SuppValue&) As Boolean
 Select Case Action%
 Case 1 ' Dialog box initialization
 Case 2 ' Value changing or button pressed
 Rem examplefunction = True ' Prevent button press from closing the dialog box
 Case 3 ' TextBox or ComboBox text changed
 Case 4 ' Focus changed
 Case 5 ' Idle
 Rem Wait .1 : examplefunction = True ' Continue getting idle actions
 Case 6 ' Function key
 End Select
End Function

Running Scripts from the AWR Design Environment

You can run scripts directly from the AWRDE Scripts display either one of three areas. Scripts menu.

1.
2.
3.

Custom Name
Scripts > Project Scripts
Scripts > Global Scripts

 The list that displays is in the format . Any Sub in a given module that takes no input arguments is available in this list. You <module name>(<sub name>)
can hide any such sub by using the declaration before the name of the subroute. For example, the following figure shows a macro named Private
"example" that has three subroutines, , , and .a b c

blocked URL

Notice that the third sub is declared private. If you choose you can access only the first two subroutines as shown in the Scripts > Project Scripts
following figure.

blocked URL

You can control how scripts display in the menu. Above any Sub, you can add a line that defines the folder in which to display the script. This line Scripts
is in the form where is the desired folder name. The name of the sub displays under that folder. You can use the folder name '$MENU=name name
"hidden" to prevent that sub from displaying. For example, you can add the line " " to display this script under the sub menu. Only one ' $MENU=Data Data
level of folders is allowed. When you use this syntax the script is only in this folder; it is no longer in the or Scripts > Project Scripts Scripts > Global

 folders. Because of this structure, AWR recommends that you write your scripts with one Sub Main that uses the hidden folder tag, and then give Scripts
your code a meaningful name that you then call from the Sub Main. This is because you need a Sub Main to run the script from the SDE, but you want a
meaningful name when running the script from the menu. The following example scripting code demonstrates these various concepts.Scripts

' $MENU=hidden
sub main
 Delete_Unassociated_iNets
 end sub
' $MENU=Layout
 Sub Delete_Unassociated_iNets
End sub

The following figure shows how this script displays in the AWRDE menu.

blocked URL

Notice that there is a folder named and a script named "Delete_Unassociated_iNets" under that folder.Layout

You can use menu, toolbar, or hotkey customizations to run any macro. See and for details on “Customizing Toolbars and Menus” “Customizing Hotkeys”
customizing these objects. When customizing, look for the setting equal to . You only should customize global scripts since they are Categories Macros
guaranteed to be available to run in each project opened.

Menus

Edit Area Speed Menus

When in the edit menu, right click to get the following menu items.

Item Description

Cut Move the selected text to the Clipboard. (Ctrl+X)

Copy Copy the selected text to the Clipboard. (Ctrl+Y)

Paste Paste the Clipboard text over the selected text. (Ctrl+V)

Run Run the macro to completion. (If the macro is not active, start it.) (F5)

https://awrcorp.com/download/faq/english/docs/ApiReference/images/13ug_api_example1.png
https://awrcorp.com/download/faq/english/docs/ApiReference/images/13ug_api_example2.png
https://awrcorp.com/download/faq/english/docs/ApiReference/images/script_menu1.png
https://awrcorp.com/download/faq/english/docs/Users_Guide/customizing_de.html#customizing_toolbars
https://awrcorp.com/download/faq/english/docs/Users_Guide/customizing_de.html#customizing_hotkeys

Pause Stop the macro/module. Execution can be continued. (Esc)

End Terminate the macro/module. Execution cannot be continued.

Step Into Execute the current line. If the current line is a subroutine or function call, stop on the first line of that subroutine or function. (If the macro is not
active, start it.) (F8)

Step to Cursor Execute until the line the cursor is on is the current line. (If the macro is not active, start it.) (F7)

Toggle Break Toggle the breakpoint on the current line. (F9)

Clear All Breaks Clear all breakpoints. (Shift+Ctrl+F9)

Quick Watch Show the value of the expression under of the cursor in the immediate window.

Browse Open the Object Browser window and show the item at the current cursor location

Show Next
Statement

Show the next statement to be executed.

File Menu

The File menu provides the normal options.

Item Description

MWOffice Switch control to the AWR Design Environment

Save Save the current AWRDE Project.

Print Print the current macro/module.

Print Setup Select the default printer.

Close Close the SDE

Edit Menu

The File menu provides the normal options.

Item Description (hot Key)

Undo Undo the last edit. ()Ctrl+Z

Redo Redothe last edit. ()Ctrl+Y

Cut Move the selected text to the Clipboard. ()Ctrl+X

Copy Copy the selected text to the Clipboard. ()Ctrl+Y

Paste Paste the Clipboard text over the selected text. ()Ctrl+V

Delete Delete the selected text. ()Del

Select All Select all of the text. ()Ctrl+A

Find... Find a string. ()Ctrl+F

Replace... Replace a string with another. ()Ctrl+R

Find Next Repeat last find or replace. ()F3

Indent Move selected lines right. ()Tab

Outdent Move selected lines left.

Reference Edit the macro/module's references.

Parameter Info Show the parameter information. (). Used on procedures to get input and output information.Ctrl+I

Complete Word Complete the word. () When auto-complete has selected the next object, this will complete the identified word.Tab

Font... Font setting for Edit Area

View Menu

The View menu provides the normal options.

Item Description (Hot Key)

Object Browser Open the Object Browser window and show the item at the current cursor location.

Split Window Toggle the split on/off for Immediate window and edit area.

Immediate Window Show the immediate output window. ()Ctrl+E

Watch Window Show the watch expressions window. ()Ctrl+W

Call Stack Show the call stack window. ()Ctrl+T

Project Window Open project window if closed

Toolbars Toggle the Debug, Edit and Standard toolbars on/off.

Status Bar Toggle the status bar on/off. Located at the bottom of the SDE.

Insert Menu

The Insert menu provides the normal options.

Item Description

User Form Opens the user interface to design a dialog

Code Module Adds a new code module either to Local or Global scripts depending on where your cursor was last in the project tree

Debug Menu

The Debug menu provides the normal options.

Item Description (Hot Key)

Step Into Execute the current line. If the current line is a subroutine or function call, stop on the first line of that subroutine or function. (If the macro is not
active, start it.) ()F8

Step Over Execute to the next line. If the current line is a subroutine or function call, execute that subroutine or function completely. ()Shift+F8

Step Out Step out of the current subroutine or function call. ()Ctrl+F8

Run to Cursor Execute until the line the cursor is on is the current line. (If the macro is not active, start it.) ()F7

Quick Watch Show the value of the expression under of the cursor in the immediate window.

Add Watch Add the expression under of the cursor in the watch window, only available when a script is paused.

Toggle Breakpoint Toggle the breakpoint on the current line. ()F9

Clear All
Breakpoints

Clear all breakpoints. ()Shift+Ctrl+F9

Set Next Statement Set the next statement to be executed. Only statements in the current subroutine/function can be selected.

Show Next
Statement

Show the next statement to be executed.

Run Menu

The Run menu provides the normal options.

Item Description (Hot Key)

Run Sub Run the macro to completion. (If the macro is not active, start it.) ()F5

Split Window Stop the macro/module. Execution can be continued. ()Esc

Immediate Window Terminate the macro/module. Execution cannot be continued.

Help Menu

The Help menu provides the normal options.

Item Description (Hot Key)

About AWR Scripting Information dialog box.

	Scripting Development Environment

